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Neutrino Oscillation Global Fit Results

D.V.Forero, Tértola & Valle (PRD

10

ax
(4,1

90(2014))

arxiv:1405.7540

P

T

.2,
sin'e,,

0.4

.2,
sne,,

LR | L

PRI B

i IR

[ARRERRRRERERRE RN

T

parameter | bf+ 1o |
am3, [10-5ev2] 7.601%1% 2.4%
|am, (10~ 3ev2] 2.4810,% 2.4%
H 238100
sin? 64,/107" 3.234+0.16 | 5.0%
sin? 643/102 2.26+0.12 | 5.3%
H 2294012 | 5.2%
sin2 05 /101 5677032 | 7.4%
IH stsi ool 6.9%
§/m a0 o
H 1.48 + 0.31

6

7

2 -5
Am2 [10°ev7]

25
2 -3
Am’, [10°%ev7]

0

1
d/m



The topics along this talk...

Q Introduction
@ Is it possible to generate a ‘large’ NSI?

Q NSI phenomenology
@ The standard approach to the NSI
What are the current limits?
Where the CC-like NSI can be probed?
Results |
Where the NC-like NSI can be probed?
Results Il
Are there any implications for the future v-program?
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The beginnings

The importance of neutrino—matter interactions

L. Wolfenstein (PRD 17(1978))
m, =0
@ Case I: Off-diagonal NC couplings.
@ Case Il: Non-orthogonality among the vs in the weak basis.
Vacuum and matter v-oscillations

@ Case lll: NC with diagonal couplings but including the v,-CC interactions
with matter, Standard matter effect.

J.W.F Valle (PLB 199(1987))

@ Neutrinos remain massless due to a symmetry (total LN).

@ Because of the Non-unitarity of the leptonic mixing matrix, the flavor
neutrino eigenstates are not orthogonal.

@ In matter ‘oscillations’ appear due to the interplay of CC and NC
v—interactions.



Outline

0 Introduction
@ Is it possible to generate a ‘large’ NSI?



Towers of effective operators

N> Newss
M.B. Gavela et al. (PRD 79(2009))
1 d=6 1 a=8
d= d=
5£eff:ﬁ26i0i 6+FZCKOK 8,
i k

After EWSB:

mi_ V2 (LI mR_ V? 1 Vv 3 e

€ga = W( NSI ) ' €Ba = pp2 —ECLE+W(CLEH+CLEH) e

e

where the conditions to suppress charged LFV (4 lepton) process are:

( Ly +—V2 (Chgy =& ))Cw 0
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Towers of effective operators
N> Newss

M.B. Gavela et al. (PRD 79(2009))

Assumptions, limitations and consequences of the analysis:

@ The analysis is limited to operators induced at tree level.

@ With d = 6 operators (obeying the cancellation rules) it is not possible to
obtain all the NSI couplings, for instance, 7.

@ The d = 8 operators (obeying the cancellation rules) are the potential
candidates to generate ‘large’ NSI.

@ For d = 8, and the mediators (2 to do the cancellation job) coupling to
only SM bilinears, d = 6 contributions are also produced. Thus, some
fine-tuning or extra symmetries are need.

@ In a d = 8 case fulfilling all the requirements one should be careful with
one-loop corrections since they can spoil the d = 6 cancellation
conditions.

Many requirements (and some fine-tuning) have to be fulfilled to generate
‘large NSI’ when A is above the EWSB scale. Are there another possibilities?



NSI via light mediators, my < my

Y. Farzan et al. arxiv:1512.09147

New light gauge boson from U(1)’ gauge models with a non-trivial two
component representation for the left-handed leptons:
@ From the low energy relation: eGr ~ (gx/mx)?, to generate £ ~ 1, the
condition gx/mx = G/? should be fulfilled.
The non-detection of the new particle implies:
@ Instead of the usual requirement my > mz (which produces ¢ < 1), a
second option considers gx < 1. Specifically, gx ~ 5 x 10~5 and

my ~ 10 MeV.
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Outline

O NSI phenomenology
@ The standard approach to the NSI
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The standard NSI (pheno) framework

L. Wolfenstein (PRD 17(1978)), JW.F Valle (PLB 199(1987))
M.M Guzzo et al. (PLB 260(1991)), E. Roulet (PRD 44 (1991))
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Outline

O NSI phenomenology

@ What are the current limits?
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Current bounds

CC-like NSI
C. Biggio etal. (JHEP 090(2009))

Bounds calculated from:

@ VY determination: From Kaon decays — V! (and asumming CKM
unitarity) compared with the derivation from beta decays (affected by
NSI).

@ Universality tests: Ratios # — e(u)v and T — 7 decay rates modified by
quark CC-like NSI.

@ Non-observation of flavor change at NOMAD (‘zero distance effect’).

Channels v, — ve (|49, [esa ")), ve — v, (|92)), and v, — vy (e
LUd L(R)

o))
Assuming only one parameter at a time (90% C.L. for 1 d.o.f):

udA

uT J

v LRy V] 0.041]  0.026(0.037) 0.041
x=| A A Al 9% <]| 002 0.078 0.013
L(R) LR A 0.087(0.12) 0.013(0.018) 0.13

WARNING: Use these limits with care! Are the assumptions clear?

‘We improved the limit on |¢49| NSI coupling ‘ (it will be covered later on).
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Current bounds
NC-like NSI
M.C. Gonzalez-Garcia et al. (JHEP 152 (2013))

From a global fit of oscillation neutrino data, the 90% of C.L bounds for the
LMA solution are:

[0.02(0.00),0.51] [~0.09,0.04] [—0.14,0.14]
|f=d) ¢

EaBf — € X 0 [-0.01,0.01]
X X [-0.01,0.03]
where

Yi\ ¢ d
EY <Ye> €ap = Eap + Yucap + Yueap

f=e,u,d

In the case of v’s interacting with the Earth matter:
ely ~ e85 +3.051el 5 +3.102e9

Thus, the less constrained and non-diagonal NSI coupling is =2~ O(1).

For a complete set of constrains on s’:ﬂe see table Il in Ref:
0O.G Miranda etal. (NJP 17 (2015))
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O NSI phenomenology

@ Where the CC-like NSI can be probed?
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NSI in SBL reactor experiments

J. Kopp etal. (PRD 77(2008)) arxiv:0705.2595

@ Production (Detection) <= (8~ ')-decay process.
@ Atthe quark level u <= d.

@ NC matter effects in neutrino propagation can be neglected, so only CC part is
present in v production and detection.

S(D)

~m,f,VEA
S0 |

) —~0 and éng)’”’d’ViA
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NSI in SBL reactor experiments

J. Kopp etal. (PRD 77(2008)) arxiv:0705.2595

@ Production (Detection) <= (8~ ')-decay process.
@ Atthe quark level u <= d.

@ NC matter effects in neutrino propagation can be neglected, so only CC part is

present in v production and detection.

~m,f,VEA S(D)
— €ep

~S(D),u,d,V+A
Eaﬁ Eeﬁ

—0 and

)

Assumptions in the analysis:
@ 3, =¥ = ¢, = |e,|€"

o |Voz> = |Va> + Za, a’y|V’Y>

@ The effective oscillation probability is given by:

‘zero distance term’

Prg g =1
s =14 4lee|COSPe

— 4[siN 013 + Ssle,.| cOS (5 — ¢u) + Casler| cOS(8 — ¢- ) sin® Agy + O(e)?
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Daya Bay ve —
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O NSI phenomenology

@ Results |
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Results for the ¢, case
10.020 < sin® 0B)° < 0.024]

S. Agarwalla et al. (JHEP 060 (2015))

B o 0a=5%
L g i lee| < 0.015 @90% C.L
€
0.003 | 0.020 < sin® 643 < 0.025
W 0002 F 3 R
0.001 | : 003 [ .
0'|1| ) [ h
0 001 002 003 o004 W 0027 1
) i 1
sin” 03 0.01 |- ]
0'|1.| ]
C.L =68.3,90,95%; 2d.of 0 001 002 003 004
anorm = 0 . 2
lee| < 0.0012 @90% C.L sin 913
0.020 < sin® 643 < 0.024
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Outline

O NSI phenomenology

@ Where the NC-like NSI can be probed?
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NSI effects at LBL v-experiments

Generalizing the effective matter potential

The Standard vacuum neutrino oscillation Hamiltonian is given by:

Ho Udiag (0, Amj,, Am3;) U'],

~2E |
while the general matter interaction Hamiltonian can be written as

1+eee <o €or
Hie =V E%’L)* €n  Eur

mye (om e
(€/LT) 57’7’

with V = V2 G Ne or acc =2V E = 7.63 x 1075 [ | [ 5],

The oscillation probability is obtained as:

Py = |(vs| €xp [~i (Ho + Hat)][va)®
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NSI effects at LBL v-experiments

(Anti)neutrino appearance

Figure taken from: J. Kopp etal. (PRD 77 (2008))
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NSI effects at LBL v-experiments

(Anti)neutrino appearance

Figure taken from: J. Kopp etal. (PRD 77 (2008))
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@ We will consider only the (Anti)neutrino appearance channel.
@ Only the off-diagonal NSI parameter €. = || exp (i¢) # 0.

@ We simulate true neutrino events including NSI and we compare them to
the test SM events in both T2K (scaled 5 yrs) and NoVA (3v+37).

@ Our results are only for normal MH.
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O NSI phenomenology

@ Results Il
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Results

Bi-rate plots
D.V.Forero and P. Huber arxiv:1601.03736
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Results

Histograms
D.V.Forero and P. Huber arxiv:1601.03736
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O NSI phenomenology

@ Are there any implications for the future v-program?
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The future
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What has it been covered...

Q Introduction
@ Is it possible to generate a ‘large’ NSI?

Q NSI phenomenology
@ The standard approach to the NSI
What are the current limits?
Where the CC-like NSI can be probed?
Results |
Where the NC-like NSI can be probed?
Results Il
Are there any implications for the future v-program?
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THANK YOU
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